import numpy as np
import pandas as pd
import xarray as xr
import imod
[docs]def points_in_bounds(da, **points):
"""
Returns whether points specified by keyword arguments fall within the bounds
of ``da``.
Parameters
----------
da : xr.DataArray
points : keyword arguments of coordinate=values
keyword arguments specifying coordinate and values. Please refer to the
examples.
Returns
-------
in_bounds : np.array of bools
Examples
--------
Create the DataArray, then use the keyword arguments to define along which
coordinate to check whether the points are within bounds.
>>> nrow, ncol = 3, 4
>>> data = np.arange(12.0).reshape(nrow, ncol)
>>> coords = {"x": [0.5, 1.5, 2.5, 3.5], "y": [2.5, 1.5, 0.5]}
>>> dims = ("y", "x")
>>> da = xr.DataArray(data, coords, dims)
>>> x = [0.4, 2.6]
>>> points_in_bounds(da, x=x)
This works for an arbitrary number of coordinates:
>>> y = [1.3, 2.7]
>>> points_in_bounds(da, x=x, y=y)
"""
# check sizes
shapes = {}
for coord, value in points.items():
arr = np.atleast_1d(value)
points[coord] = arr
shape = arr.shape
if not len(shape) == 1:
raise ValueError(
f"Coordinate {coord} is not one-dimensional, but has shape: {shape}"
)
shapes[coord] = shape
if not len(set(shapes.values())) == 1:
msg = "\n".join([f"{coord}: {shape}" for coord, shape in shapes.items()])
raise ValueError(f"Shapes of coordinates do match each other:\n{msg}")
# Re-use shape state from loop above
in_bounds = np.full(shape, True)
for key, x in points.items():
da_x = da.coords[key]
_, xmin, xmax = imod.util.coord_reference(da_x)
# Inplace bitwise operator
in_bounds &= (x >= xmin) & (x < xmax)
return in_bounds
def _get_indices_1d(da, coordname, x):
x = np.atleast_1d(x)
x_decreasing = da.indexes[coordname].is_monotonic_decreasing
dx, xmin, _ = imod.util.coord_reference(da.coords[coordname])
ncell = da[coordname].size
# Compute edges
xs = np.full(ncell + 1, xmin)
# Turn dx into array
if isinstance(dx, float):
dx = np.full(ncell, dx)
# Always increasing
if x_decreasing:
xs[1:] += np.abs(dx[::-1]).cumsum()
else:
xs[1:] += np.abs(dx).cumsum()
# From np.searchsorted docstring:
# Find the indices into a sorted array a such that, if the corresponding
# elements in v were inserted before the indices, the order of a would
# be preserved.
ixs = np.searchsorted(xs, x, side="right")
# Take care of decreasing coordinates
if x_decreasing:
ixs = ncell - ixs
else:
ixs = ixs - 1
return ixs
[docs]def points_indices(da, **points):
"""
Get the indices for points as defined by the arrays x and y.
This function will raise a ValueError if the points fall outside of the
bounds of the DataArray to avoid undefined behavior. Use the
``imod.select.points_in_bounds`` function to detect these points.
Parameters
----------
da : xr.DataArray
points : keyword arguments of coordinates and values
Returns
-------
indices : dict of {coordinate: xr.DataArray with indices}
Examples
--------
To extract values:
>>> x = [1.0, 2.2, 3.0]
>>> y = [4.0, 5.6, 7.0]
>>> indices = imod.select.points_indices(da, x=x, y=y)
>>> ind_y = indices["y"]
>>> ind_x = indices["x"]
>>> selection = da.isel(x=ind_x, y=ind_y)
Or shorter, using dictionary unpacking:
>>> indices = imod.select.points_indices(da, x=x, y=y)
>>> selection = da.isel(**indices)
To set values (in a new array), the following will do the trick:
>>> empty = xr.full_like(da, np.nan)
>>> empty.data[indices["y"].values, indices["x"].values] = values_to_set
Unfortunately, at the time of writing, xarray's .sel method does not
support setting values yet. The method here works for both numpy and dask
arrays, but you'll have to manage dimensions yourself!
The ``imod.select.points_set_values()`` function will take care of the
dimensions.
"""
inside = points_in_bounds(da, **points)
# Error handling
if not inside.all():
raise ValueError("Not all points are within the bounds of the DataArray")
indices = {}
for coordname, value in points.items():
ind_da = xr.DataArray(_get_indices_1d(da, coordname, value), dims=["index"])
ind_da["index"] = np.arange(ind_da.size)
indices[coordname] = ind_da
return indices
[docs]def points_values(da, **points):
"""
Get values from specified points.
This function will raise a ValueError if the points fall outside of the
bounds of the DataArray to avoid undefined behavior. Use the
``imod.select.points_in_bounds`` function to detect these points.
Parameters
----------
da : xr.DataArray
points : keyword arguments of coordinate=values
keyword arguments specifying coordinate and values.
Returns
-------
selection : xr.DataArray
Examples
--------
>>> x = [1.0, 2.2, 3.0]
>>> y = [4.0, 5.6, 7.0]
>>> selection = imod.select.points_values(da, x=x, y=y)
"""
iterable_points = {}
for coordname, value in points.items():
if coordname not in da.coords:
raise ValueError(f'DataArray has no coordinate "{coordname}"')
# contents must be iterable
iterable_points[coordname] = np.atleast_1d(value)
indices = imod.select.points.points_indices(da, **iterable_points)
selection = da.isel(**indices)
# Fetch a value from the dictionary, try to extract a meaningful index
sample_dim = next(iter(points.values()))
if isinstance(sample_dim, pd.Series):
selection.coords["index"] = sample_dim.index.values
else:
sample_dim = next(iter(iterable_points.values()))
selection.coords["index"] = np.arange(len(sample_dim))
return selection
[docs]def points_set_values(da, values, **points):
"""
Set values at specified points.
This function will raise a ValueError if the points fall outside of the
bounds of the DataArray to avoid undefined behavior. Use the
``imod.select.points_in_bounds`` function to detect these points.
Parameters
----------
da : xr.DataArray
values : (int, float) or array of (int, float)
points : keyword arguments of coordinate=values
keyword arguments specifying coordinate and values.
Returns
-------
da : xr.DataArray
DataArray with values set at the point locations.
Examples
--------
>>> x = [1.0, 2.2, 3.0]
>>> y = [4.0, 5.6, 7.0]
>>> values = [10.0, 11.0, 12.0]
>>> out = imod.select.points_set_values(da, values, x=x, y=y)
"""
# Avoid side-effects just in case
# Load into memory, so values can be set efficiently via numpy indexing.
da = da.copy(deep=True).load()
inside = points_in_bounds(da, **points)
# Error handling
if not inside.all():
raise ValueError("Not all points are within the bounds of the DataArray")
if not isinstance(values, (int, float)): # then it might be an array
if len(values) != len(inside):
raise ValueError(
"Shape of ``values`` does not match shape of coordinates."
f"Shape of values: {values.shape}; shape of coordinates: {inside.shape}."
)
sel_indices = {}
for coordname in points.keys():
if coordname not in da.coords:
raise ValueError(f'DataArray has no coordinate "{coordname}"')
underlying_dims = da.coords[coordname].dims
if len(underlying_dims) != 1:
raise ValueError(f"Coordinate {coordname} is not one-dimensional")
# Use the first and only element of underlying_dims
sel_indices[underlying_dims[0]] = _get_indices_1d(
da, coordname, points[coordname]
)
# Collect indices in the right order
indices = []
for dim in da.dims:
indices.append(sel_indices.get(dim, slice(None, None)))
# Set values in dask or numpy array
da.data[tuple(indices)] = values
return da