Source code for imod.mf6.ghb

import numpy as np

from imod.mf6.pkgbase import BoundaryCondition, VariableMetaData

[docs]class GeneralHeadBoundary(BoundaryCondition): """ The General-Head Boundary package is used to simulate head-dependent flux boundaries. Parameters ---------- head: array of floats (xr.DataArray) is the boundary head. (bhead) conductance: array of floats (xr.DataArray) is the hydraulic conductance of the interface between the aquifer cell and the boundary.(cond) concentration: array of floats (xr.DataArray, optional) if this flow package is used in simulations also involving transport, then this array is used as the concentration for inflow over this boundary. concentration_boundary_type: ({"AUX", "AUXMIXED"}, optional) if this flow package is used in simulations also involving transport, then this keyword specifies how outflow over this boundary is computed. print_input: ({True, False}, optional) keyword to indicate that the list of general head boundary information will be written to the listing file immediately after it is read. Default is False. print_flows: ({True, False}, optional) Indicates that the list of general head boundary flow rates will be printed to the listing file for every stress period time step in which "BUDGET PRINT" is specified in Output Control. If there is no Output Control option and PRINT FLOWS is specified, then flow rates are printed for the last time step of each stress period. Default is False. save_flows: ({True, False}, optional) Indicates that general head boundary flow terms will be written to the file specified with "BUDGET FILEOUT" in Output Control. Default is False. observations: [Not yet supported.] Default is None. """ _pkg_id = "ghb" _period_data = ("head", "conductance") _metadata_dict = { "head": VariableMetaData(np.floating), "conductance": VariableMetaData(np.floating), } _keyword_map = {} _template = BoundaryCondition._initialize_template(_pkg_id) _auxiliary_data = {"concentration": "species"}
[docs] def __init__( self, head, conductance, concentration=None, concentration_boundary_type="aux", print_input=False, print_flows=False, save_flows=False, observations=None, ): super().__init__(locals()) self.dataset["head"] = head self.dataset["conductance"] = conductance if concentration is not None: self.dataset["concentration"] = concentration self.dataset["concentration_boundary_type"] = concentration_boundary_type self.add_periodic_auxiliary_variable() self.dataset["print_input"] = print_input self.dataset["print_flows"] = print_flows self.dataset["save_flows"] = save_flows self.dataset["observations"] = observations self._pkgcheck()