""" Freshwater Lens =============== This 2D examples illustrates the growth of a fresh water lens in an initially fully saline domain. """ import matplotlib.pyplot as plt # %% # We'll start with the usual imports import numpy as np import xarray as xr import imod # sphinx_gallery_thumbnail_number = -1 # %% # Discretization # -------------- # # We'll start off by creating a model discretization, since # this is a simple conceptual model. # The model is a 2D cross-section, hence nrow = 1. nrow = 1 # number of rows ncol = 40 # number of columns nlay = 15 # number of layers dz = 10 dx = 250 dy = -dx # %% # Set up tops and bottoms top1D = xr.DataArray( np.arange(nlay * dz, 0.0, -dz), {"layer": np.arange(1, nlay + 1)}, ("layer") ) bot = top1D - dz # %% # Set up ibound, which sets where active cells are (ibound = 1.0) bnd = xr.DataArray( data=np.full((nlay, nrow, ncol), 1.0), coords={ "y": [0.5], "x": np.arange(0.5 * dx, dx * ncol, dx), "layer": np.arange(1, 1 + nlay), "dx": dx, "dy": dy, }, dims=("layer", "y", "x"), ) # %% # Boundary Conditions # ------------------- # # Set the constant heads by specifying a negative value in iboud, # that is: bnd[index] = -1` bnd[0, :, 0:12] = -1 bnd[0, :, 28:40] = -1 fig, ax = plt.subplots() bnd.plot(y="layer", yincrease=False, ax=ax) # %% # Define the recharge rates rch_rate = xr.DataArray( data=np.full((nrow, ncol), 0.0), coords={"y": [0.5], "x": np.arange(0.5 * dx, dx * ncol, dx), "dx": dx, "dy": dy}, dims=("y", "x"), ) rch_rate[:, 13:27] = 0.001 fig, ax = plt.subplots() rch_rate.plot(ax=ax) # %% # The model is recharged with fresh water rch_conc = xr.full_like(rch_rate, fill_value=0.0) # %% # Initial Conditions # ------------------ # # Defining the starting concentrations sconc = xr.DataArray( data=np.full((nlay, nrow, ncol), 35.0), coords={ "y": [0.5], "x": np.arange(0.5 * dx, dx * ncol, dx), "layer": np.arange(1, nlay + 1), "dx": dx, "dy": dy, }, dims=("layer", "y", "x"), ) sconc[:, 13:27, 0] = 0.0 fig, ax = plt.subplots() sconc.plot(y="layer", yincrease=False, ax=ax) # %% # Build # ----- # # Finally, we build the model. m = imod.wq.SeawatModel("FreshwaterLens") m["bas"] = imod.wq.BasicFlow(ibound=bnd, top=150.0, bottom=bot, starting_head=0.0) m["lpf"] = imod.wq.LayerPropertyFlow( k_horizontal=10.0, k_vertical=20.0, specific_storage=0.0 ) m["btn"] = imod.wq.BasicTransport( icbund=bnd, starting_concentration=sconc, porosity=0.35 ) m["adv"] = imod.wq.AdvectionTVD(courant=1.0) m["dsp"] = imod.wq.Dispersion(longitudinal=0.0, diffusion_coefficient=0.0) m["vdf"] = imod.wq.VariableDensityFlow(density_concentration_slope=0.71) m["rch"] = imod.wq.RechargeHighestActive(rate=rch_rate, concentration=0.0) m["pcg"] = imod.wq.PreconditionedConjugateGradientSolver( max_iter=150, inner_iter=30, hclose=0.0001, rclose=0.1, relax=0.98, damp=1.0 ) m["gcg"] = imod.wq.GeneralizedConjugateGradientSolver( max_iter=150, inner_iter=30, cclose=1.0e-6, preconditioner="mic", lump_dispersion=True, ) m["oc"] = imod.wq.OutputControl(save_head_idf=True, save_concentration_idf=True) m.create_time_discretization(additional_times=["1900-01-01T00:00", "2000-01-01T00:00"]) # %% # Now we write the model, including runfile: modeldir = imod.util.temporary_directory() m.write(modeldir, resultdir_is_workdir=True) # %% # Run # --- # # You can run the model using the comand prompt and the iMOD-WQ executable. # This is part of the iMOD v5 release, which can be downloaded here: # https://oss.deltares.nl/web/imod/download-imod5 . # This only works on Windows. # # To run your model, open up a command prompt # and run the following commands: # # .. code-block:: batch # # cd c:\path\to\modeldir # c:\path\to\imod\folder\iMOD-WQ_V5_3_SVN359_X64R.exe FreshwaterLens.run # # Note that the version name of your executable might differ. # # %% # Visualise results # ----------------- # # After succesfully running the model, you can # plot results as follows: # # .. code:: python # # head = imod.idf.open(modeldir / "results/head/*.idf") # # fig, ax = plt.subplots() # head.plot(yincrease=False, ax=ax) # # conc = imod.idf.open(modeldir / "results/conc/*.idf") # # fig, ax = plt.subplots() # conc.plot(levels=range(0, 35, 5), yincrease=False, ax=ax) # # %%